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ABSTRACT: Central to the problem of heat exchangers
design is the prediction of pressure drop and heat transfer in
the noncircular exchanger duct passages such as parallel
channels. Numerical solutions for laminar fully developed
flow are presented for the pressure drop (friction factor
times Reynolds number) and heat transfer (Nusselt num-
bers) with thermal boundary conditions [constant heat flux
(CHF) and constant wall temperature (CWT) ] for a pseu-
doplastic and dilatant non-Newtonian fluid flowing be-
tween infinite parallel channels. A shear rate parameter
could be used for the prediction of the shear rate range for a
specified set of operating conditions that has Newtonian
behavior at low shear rates, power law behavior at high
shear rates, and a transition region in between. Numerical
results of the Nusselt number [constant heat flux (CHF) and

constant wall temperature (CWT) ] and the product of the
friction factor and Reynolds number for the Newtonian
region were compared with the literature values showing
agreement within 0.36% in the Newtonian region. For pseu-
doplastic and dilatant non-Newtonian fluids, the modified
power law model is recommended to use because the fluid
properties have big discrepancies between the power law
model and the actual values in low and medium range of
shear rates. © 2003 Wiley Periodicals, Inc. ] Appl Polym Sci 89:
3601-3608, 2003
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INTRODUCTION

In a number of industries, such as the chemical, elec-
tromechanical, pharmaceutical, biotechnological, he-
modynamics, polymer bionanocomposites, and food
industries, it is usual to treat with non-Newtonian
fluids. Many non-Newtonian fluids have viscous
properties that are different in the various shear rate
ranges. Non-Newtonian fluids may be defined as flu-
ids for which the flow curve (t vs vy) is not linear
through the origin at a given temperature and pres-
sure.

Irvine and Karni' provided a general overview of
non-Newtonian fluids, discussing rheological prop-
erty measurements, pressure drop, and heat transfer.
A large number of constitutive equation have been
developed to describe the behavior of purely viscous
non-Newtonian fluids (Skelland?). Some have as many
as five rheological properties, and while they are suit-
able for describing in detail the relations between
shear stress and shear rate for complex fluids, they are
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normally too cumbersome to use in engineering anal-
yses.

Central to the problem of heat exchangers design is
the prediction of pressure drop and heat transfer in
the noncircular exchanger duct passages such as par-
allel channels. For fully developed laminar flow of
Newtonian and non-Newtonian power law fluids in a
circular duct, the solutions are well known for both
the classical boundary conditions of constant wall
temperature (CWT) and constant wall heat flux (CHF)
and the pressure drop.

For Newtonian fluids, pressure drop and heat trans-
fer coefficients were calculated by Shah and London,’
Rothfus et al.* etc. For power law fluids, Chandru-
patla,” Wheeler and Wissler,° Kozicki and Tiu,”
Kozicki et al.,® Hartnett et al.,° Hartnett and Kostic,'°
Pinho and Whitelaw,'! and Lin et al.'? obtained those
analytically and experimentally.

For power law fluids, such solutions are also avail-
able (Beek and Eggink'® and Grigull'*). For situations
where the velocity profile is fully developed but the
temperature profile is developing (the Graetz prob-
lem), solutions have also been reported for Newtonian
fluids for both boundary conditions (Shah and Lon-
don?) and for power law fluids (Bird and Hassager,"
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Figure 1 Typical flow curve of pseudoplastic fluid.

Lyche and Bird,'"® Whitman and Drake,'” Mckillop,'®
Joshi and Bergles'®)

Recently a large number of heat exchangers is de-
signed and manufactured for the automotive and
chemical process industries to heat or cool pseudo-
plastic and dilatant fluids. Even today, there is a gen-
eral lack of experimental data for heat transfer coeffi-
cients required for the heat exchanger designs. It is
felt, however, that the rheological behavior can best be
investigated with a well-defined geometry often
found in industry, such as a parallel duct.

Although a power law model has been used exten-
sively for calculating velocity profile and heat transfer
coefficient in engineering, it has significant disadvan-
tages that it only applies to the power law region in
the flow curve in Figure 1 and the apparent viscosity
(Irvine and Karni') at the centeroid of the duct be-
comes infinite.

The purpose of the present study is to extend our
knowledge and correct this situation by presenting
solutions for laminar fluids having the rheological
characteristics illustrated in Figure 1 and to develop
the relationships between the friction factor-Reynolds
number and the heat transfer coefficients for pseudo-
plastic and dilatant fluids. Such a solution should have
the characteristics that at low velocities (low shear
rates) the Newtonian solution is an asymptote while at
large shear rates the power law solution is an asymp-
tote. In addition, the solution should predict the ap-
propriate pressure drop and heat transfer behavior in
the transition zone. Finally, a parameter is needed to
predict the shear rate range in terms of the operating
characteristics of the system. For a circular tube (Brew-
ster and Irvine®), and concentric annulus (Capobian-
chi and Irvine®"), such solutions are available.

THEORETICAL BACKGROUND

A number of constitutive equation can describe the
apparent viscosity-shear rate relation (Irvine and
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Karni') for fluids such as shown in Figure 1. A con-
venient and useful equation is the “modified power
law model,” which to the authors” knowledge was
first used by Dunleavy and Middleman®*:

Mo
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Inspection of eq. (1) reveals that at low rates (1,/ Ky'™
> 1) the apparent viscosity becomes equal to 7, and
the fluid is operating in the Newtonian region of Fig-
ure 1. At higher shear rates (n,/ Ky'™" > 1) the fluid
becomes a power law fluid where v, = Ky'™". At
intermediate shear rates, there is a transition zone. An
additional advantage of the modified power law over
constitutive equations such as Ellis, Sutterby, Cross,
etc., is that the familiar Newtonian and power law
Reynolds numbers are retained in the analysis.

The problem facing the designer when considering
pseudoplastic and dilatant fluids is which of the three
regions shown in Figure 1 will be the operating region
for the system under consideration. For low Reynolds
number forced flows, the system may well be operat-
ing in regions I and II, and even though the fluid is
pseudoplastic or dilatant, the power law solution be-
comes irrelevant and Newtonian and transitional so-
lutions are required. In order to determine the correct
shear rate region for a given set of operating condi-
tions a dimensionless shear rate parameter is required.
Such a parameter arises naturally by using the modi-
fied power law constitutive equation in solving the
dimensionless momentum equation for forced convec-
tion flows.

The derivation of the shear rate parameter will be
illustrated by considering a simple but fundamental
case, i.e., fully developed laminar flow of a modified
power law fluid between infinite parallel channels.
This shear rate parameter should contain those quan-
tities that are under the control of the designer—
namely, the properties of the fluid, K, 1y, n and the
geometry of the system (the duct diameter), and the
average flow velocity ii.

Pressure drop

It is convenient to start with the conservation equa-
tions to solve a problem related to fluid flowing
through parallel channel. For steady flow of an incom-
pressible fluid with negligible viscous dissipation, the
governing equations depends on the apparent viscos-
ity that is related to the shear stress and shear rate.
An understanding of fully developed flow in paral-
lel channels can be obtained by examining a simple
flow situation. Consider the flow between two infinite
parallel channels as shown in Figure 2 but with both
plates stationary and the fluid being pumped through.
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4, = comst. or T, = const
y 1—0
R 2a
X, u
g, = const. or T, = const

Figure 2 Coordinate system for parallel channels.

Also consider the coordinate system origin as being
midway between the two plates which are a distance
2a apart. Using the shear law, 7 = 7,7, and the appro-
priate forms of momentum equation, the fully devel-
oped shear stress field is described by the following:

d ( du\  dp 5
g\ dy) = T ax (2)
with boundary conditions

u(a) =0, u'(0)=0 (3)

The following dimensionless quantities may be de-
fined:

y 2a(dp/dx)
+ _ 7 _ s
y - a 7 fa pﬁ2 (4)
. u pﬁZ—nan
u==, Re, = X (5)
pua pua
Reu = K! ReM = % (6)
«_ 1o 4 1+8
n = 1+ B/ Ny = 1+ B(dqu/der)lfn (7)
Re )\ u*
— g _ @ - , u++ - - (8)
Re, Kl\a (f,- Rep) /2
pila  pi*~"a"  pila
Rey = Re, + Re, = — + =—(1+ 9
ey = Re &= K m r+p

. 1+
MNa = 1+ B(faReg/Z)l—n(du++/dy+)1—n

(10)

It is of interest to investigate the characteristics of the
modified Reynolds number, Re,;, and the shear rate
parameter 8. The shear rate between the parallel chan-
nels is proportional to i /a as is B. Thus low shear rates
occur when B is small and high shear rates when g is
large.

3603

The parameter 8 is the shear rate parameter that
determines whether the fluid system is operating in
the Newtonian, transition, or power law regions. As 3
becomes small, Re,,; approaches the Newtonian Reyn-
olds number Re, and as 3 becomes large, Re,; ap-
proaches the power law Reynolds number Re,.

For a Newtonian fluid, the continuity equation is

o1 1 (°
u= A udA, = 7 udy (11)
Ac 0

The dimensionless form of eq. (12) becomes

1
J‘ utdyt =1 (12)
0

Since m, = 1y, eq. (3) becomes

du* f.Rey dutTt
dy+2 = - 2 M/ derZ = _]- (13)
Equation (13) becomes
1 uttdyt = 2 (14)
. f.Rey

For a modified power law fluid, eq. (3) may be written
in dimensionless form as

d Ldutt
dy \ M gyt ) T -1 (15)

with boundary conditions

u™(1)=0, u**'(0)=0 (16)
The continuity equation remains the same as eq. (14).
Therefore, eq. (15) becomes the Newtonian fluid
momentum equation when 3 is small and the power
law fluid momentum equation when B is large. Thus
eq. (15) could give the complete solution for the fluids
in Figure 1 and the final results can be presented as the
product of fRe,,vs the shear rate parameter B.

Heat transfer

The energy equation for the thermally developed flow
in a fluid between infinite parallel channels neglecting
viscous dissipation and rate of energy generation (In-
cropera and DeWitt*®) can be written as

Tyzz pcyu a (17)
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with boundary conditions

T(a) =T, T'(0)=0 (18)
Consider the case of CHF per unit area at the wall to
a fluid between infinite parallel channels.

The temperature field is fully developed when

a(T_Tw =0 19
ax Tb_Tw B ( )

where & is constant.
From ¢, = (T, — T;) = constant,

T, dT, )
dx odx (20)

From Eq. (20),
0T dT, dT, ’
ax - dr T dx (21)

Defining a dimensionless temperature, TH=T— T,/
T, — T, eq. (18) becomes

d’T*
W = - u*Nuu (22)

with boundary conditions
T*(1)=0, T*(0)=0 (23)

Defining new dimensionless temperature, T** = T"/
Nu,, eq. (23) becomes

d2T++
Ay —u’ (24)

with boundary conditions
T"*(1)=0, T""'(0)=0 (25)

From the definition of bulk temperature,

JauTdA, 1 (°
TB = T = % MTdy (26)
0
! 1
+t+ +_
J WTdy = (27)
0

Equations (24) and (27) can be solved numerically over
the appropriate range of shear rate parameter (8) to
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determine the asymptotic Nusselt numbers for con-
stant heat flux.

Next consider the case where the surface tempera-
ture is constant (CWT). From oT/ox(T — T,,/T, — T,,)
= 0 and T,= constant,

oT T-T, T,

ax T,- T, ox (28)
The dimensionless form of eq. (18) becomes
arT*
a2 = —u'T"'Nu, (29)
with boundary conditions
T*(1)=0, T (0)=0 (30)

Integrating eq. (30), then,

1 82T+ 1
f e dyt = —f u'T*Nu,dy* = —Nu, (31)
0 0

9y
o o (1) N (32)
Py - aF = = —NNu,
a]/ y+:1 a]/ y+:0

Equations (29) and (32) can be solved numerically over
the appropriate range of shear rate parameter (8) to
determine the asymptotic Nusselt numbers for con-
stant wall temperature.

NUMERICAL ANALYSIS

The governing momentum equation and the global
continuity equation were solved numerically. Solution
of the resulting system of simultaneous equations was
accomplished using an alternating direction implicit
method with successive overrelaxation.

The following algorithm was used:

Velocity field

Step 1: Specify a value of n and S:
n=12,11,1.0,090.8,60.70.6,05,0.4
10t = B = 10*

Step 2: Assume a velocity profile starting with
utt(y*) = 1/2(1 — y*?) for a Newtonian fluid.
The Newtonian velocity profile may then be
used as the initial velocity profile for the non-
Newtonian modified power law (MPL) calcula-
tion.

Step 3: Calculate n, (y") field by using the assumed
velocity field.
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Step 4: Solve eq. (15) for u™ " (y*) and by using ADI
(alternating direction implicit) method and ob-
tain fRe,,;. TDMA (tri-diagonal matrix algorithm)
may be used for obtaining the velocity profile.

Step 5: Calculate a new 7, from a new value of
velocity field.

Step 6: Calculate a new u™ (") and f Re,,.

Step 7: Compare the f, Re,,value with a value cal-
culated in step 4.

Step 8: Use the new f,Re,, to calculate a new
u""(y") and f,Reyuntil convergence.

Step 9: Obtain u™ *(y") field and f,Re,,.

Temperature field (CHF)

Step 1: The velocity profile was used to obtain the
temperature profile.

Step 2: Similar to velocity profile, TDMA was used
to obtain the temperature profile.

Step 3: Simpson’s rule was used for calculation of
Nusselt number.

Temperature field (CWT)

Either the eigenvalue method or the Runge-Kutta
method may be used to find T"' by iteration of T"'(0)
= 0 and T"'(1). By using the definition of the bulk
temperature, eq. (32) can be derived. The temperature
distribution and Nusselt number can be obtained for
various n and S.
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RESULTS AND DISCUSSION

Owing to the MPL constitutive equation, solutions
were determined for flow between infinite parallel
channels that are applicable over a wide shear rate
range of pseudoplastic and dilatant fluids from New-
tonian behavior at the lower shear rate range to power
law behavior at the higher shear rate range. A shear
rate parameter was identified that specifies whether a
particular system for a typical pseudoplastic fluid is
operating in the Newtonian, transition, or power law
region. These results are shown in Figure 3 to Figure 5.
A numerical solution to eq. (7) for parallel channels
is presented in Figure 3, which shows the quantitative
relationship between pressure drop (fRe;,) and veloc-
ity gradient (B). As expected, at low B values the
solution approaches the Newtonian value and at large
B values the solution approaches that for a power law
fluid. The shear rate parameter (8) reveals the three
regions in the following manner: region I—Newto-
nian, 8 = 10~ >%; region Il —transition, 10~ >° g = 10*5;
region lll—power law, 8 = 1072, Thus the shear rate
parameter 3 can be used to determine in which of the
three regions (Figure 1) a particular system is operat-
ing. As the shear rate parameter increases, the Reyn-
olds number increases. As the power law flow index
(n) approaches one, the tendency increases to retain
Newtonian characteristics at low Reynolds numbers.
As the flow index decreases, the tendency increases to
retain the characteristics of power law fluid at high
Reynolds numbers. Figure 3 illustrates the variation of
the fully developed fRe,with g and n for the pseudo-
plastic and dilatant fluids through parallel channels.
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Figure 3 also expresses several important features of
modified power law system. First, for complete simi-
larity modeling, the modified Reynolds number Re,,
and the parameter 8 must both be considered. Also, a
considerable difference exists if it is assumed that the
system is operating in region III when it actually is
operating in region L. Simple calculations show that
errors in pressure drop predictions can occur as large
as several hundred percent if such an uncertainty
exists in the correct operating region. The fully devel-
oped flow with modified power law fluid for the
thermal boundary conditions of CWT and CHF has
been investigated for parallel channels. Thus the in-
fluence of the operating parameter § on the fully
developed Nusselt number is available. Figures 4 and
5 show the fully developed Nusselt numbers vs the
shear rate parameter for parallel channels for the ther-
mal boundary conditions of CWT and CHF. A com-
parison of Figures 3-5 reveals that influence of the
shear rate parameter 8 is much less for the heat trans-
fer than for the pressure drop. In the latter case for the
flow index (1) when B changes from 10~* to 10* the
product of the friction factor and the Reynolds num-
ber varies from 3.6459 to 6.9771, a difference of ap-
proximately 48%. On the other hand, for the same
variation of B, the fully developed Nusselt number
varies from 2.0328 to 2.2430 for the CHF condition and
from 1.8572 to 2.0208 for the CWT condition with a
difference of approximately 9 and 8%, respectively.
Thus it would appear that the influence of 8 on the
hydrodynamic design is much more critical than for
the thermal design. The optimum criteria for the best
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design of the heat transfer enhancement and the re-
duction in friction can be finally determined from
present analysis.

For Newtonian fluid flow through parallel channels,
the differences of f,Re,,and Nusselt number (CHF and
CWT) between of the results of Shah and London® and
the present results are less than 0.36%. These results
are shown in Table L

As expected, the numerical solutions at small values
of B approach the Newtonian analytical solutions.

f.Re, =6
NMCHF = 206
NMCHT =1.88

The numerical solution at large values of B in Figures
3-5 approach the following simple correlation of
power law fluid analytical solutions (Irvine and
Karnil):

1+ 2n\"
f.Re, = 2( )
1+ 2n\'?
NuCHF = 2.06 3n
1+ 2n\'3
NuCWT = 188 37’1
CONCLUSIONS

The purpose of these research was to present several
fundamental considerations in the area of low Reyn-
olds number non-Newtonian channel flows. A discus-
sion was given of the classification of different types of
non-Newtonian fluids such as pseudoplastic and dila-
tant fluids was examined in greater detail.

Generalized Reynolds numbers were discussed, and
several that appear in the literature were defined and
examined. Caution was again advised with regard to
the several such dimensionless groups that appear in
published rheological studies (Irvine and Karni,' R. A.
Brewster and T. F. Irvine, Jr.,>® M. Capobianchi and
T. F. Irvine, Jr.2%).

TABLE 1
Comparison of f, Re,,, Nu, cyp and Nu, cwr of
Newtonian Fluid in a Parallel Channel

fa Rey N, cpp Nu, cwr
(12 24.000 8.235 7.541
27 24.000 8.236 7.514

(1) Shah and London.? (2) Present calculation.
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The use of the generalized Reynolds number to
predict the transition from Newtonian to non-Newto-
nian flow was considered and it was shown that such
numbers are very sensitive to changes in the rheologi-
cal property (flow index, n).

A method was outlined to predict fully developed
laminar pressure drop and heat transfer in parallel
channels for laminar non-Newtonian flow that utilize
presently available solutions for laminar Newtonian
tlow.

By using a more general constitutive equation, the
modified power law equation, solutions are possible
that take this shear rate dependence into account and
through a dimensionless shear rate parameter enable
an appropriate choice of the pressure drop and heat
transfer solutions.

Numerical solutions for laminar fully developed
flow between infinite parallel channels are presented
for the friction factor times Reynolds number and the
Nusselt number (CHF and CWT) for a MPL fluid that
has Newtonian behavior at low shear rates, power law
behavior at high shear rates, and a transition region in
between (Fig. 1). By using the MPL constitutive equa-
tion, solutions are obtained that are applicable over a
wide shear rate range of pseudoplastic and dilatant
fluids from the Newtonian behavior at a lower shear
rate range to the power law behavior at a higher shear
rate range.

A shear rate parameter can be used for the predic-
tion of the shear rate range for a specified set of
operating conditions. The shear rate parameter defines
the transition region (approximately 107>° = B
= 10*) and is useful in determining whether the fluid
is a fully developed Newtonian fluid (8 = 107%°) or a
fully developed power law fluid (8 = 10*°). A numer-
ical solution reveals that serious errors can result if the
pressure drop for a power law fluid applied when the
fluid is actually operating in the transition region. Of
particular interest are duct flows operating at low
Reynolds numbers. As the shear rate increases, the
tendency increases to retain power law fluid charac-
teristics at low Reynolds numbers. As the shear rate
decreases, the tendency increases to retain Newtonian
fluid characteristics at high Reynolds numbers.

For pseudoplastic and dilatant non-Newtonian flu-
ids, the MPL model is recommended for use because
the fluid properties have big differences between the
power law model and the actual values in low and
medium range of shear rates.

The numerical solution enables the conservation of
similitude when designing duct systems for such flu-
ids as pseudoplastic and dilatant fluids since both the
appropriate Reynolds and Nusselt number and the
shear rate ranges are considered.

From a comparison of the numerical calculations
between Newtonian and non-Newtonian fluid flow, it
is evident that for the thermal boundary conditions

3607

(CHF and CWT) a non-Newtonian fluid with flow
behavior index less than one gives a higher Nusselt
number than a Newtonian fluid. Due to the reduction
in frictional drag and the enhancement in heat transfer
rates, MPL fluids seem to be more optimum fluids in
heat exchanger and liquid cooling module for elec-
tronic packaging compared to Newtonian fluids. On
the other hand, the use of appropriate MPL fluids may
lead to heat transfer enhancement without the han-
dling difficulties.

NOMENCLATURE

a one half of slot width (m)
¢,  specific heat (J/kg K)
fa Darcy friction factor [2(dp/dx)(a/pii)*] (—)
h heat transfer coefficient [g,,/(T,, — T;)] (W/m* K)
k thermal conductivity (W/m K)
K power law consistency (N s"/m?)
n power law flow index (—)
Nu, Nusselt number (ha/k) (—)

p pressure (N/m?)

g,  wall heat flux (W/m?

Re, Newtonian Reynolds number (p ua/ny)(—)

Re, power law Reynolds number (pii* "a" / K)(—)
modified Reynolds number (piia/n*)(—)

T temperature (K)

T*  dimensionless temperature (—)

T*" dimensionless temperature (—)

u velocity in flow direction (m/s)

u duct average velocity (m/s)

u"™  dimensionless velocity in flow direction (/i)
—)

u™" dimensionless velocity in flow direction [u"/
(faRepn) /2] (—)

X coordinate in flow direction (m)

y coordinate in flow transverse direction (m)

y"  dimensionless coordinate in flow transverse di-

rection (—)

Greek symbols

a  thermal diffusivity (m?/s)

B shear rate parameter [B = (no/K)(ii/a)' "] (—)
v  shear rate (1/s)

m, viscosity (/) (N s/m?)

My  zero shear rate viscosity (N s/m?) (—)

n*  reference viscosity B [no(1 + B)] (N s/m?)
dimensionless viscosity (ny/n*) (—)

p  fluid density (kg/m?)

t  shear stress (N/m?)

Subscripts

a  slot width
b bulk temperature
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8

generalized Reynolds number

M  modified Reynolds number

w wall condition
Superscripts
+ dimensionless quantities

++ dimensionless quantities

!

derivative
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